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A simple model is used to calculate the distribution of fibre axes resulting from the 
deformation of a matrix containing fbres initially randomly oriented. It is shown that for 
moderately large amounts of deformation, concurrent internal shear is unlikely to make a 
significant contribution towards the alignment of fibres. After deformation, the density of 
fibre axes oriented in a particular spatial direction, dN[df2 where f2 is a solid angle, is 
shown to be proportional to the cube of the length of the radius vector from the origin to 
the surface of the strain ellipsoid. 

I .  Introduction 
Mechanical working has been suggested as a 
method of aligning fibres, originally oriented 
randomly, so that their axes lie approximately 
parallel to the direction in which the working 
load is to be applied in service, and the fibres 
exert their maximum strengthening capacity. 
Extrusion and rolling, amongst other forming 
processes, have been suggested for this purpose 
[1-4], and it has been suggested that one or other 
method of working gives the better fibre align- 
ment [5]. The object of the present work is 
threefold: (a) to provide a method for the 
calculation of the distribution of fibre axes in 
space, resulting from an arbitrary deformation of 
the matrix containing the fibres, on the basis of 
simple assumptions; (b) to examine the implica- 
tions of the resultant distributions on the choice 
of methods of working intended to produce a 
desired change in shape and an optimum fibre 
alignment; (c) to test the validity of these 
assumptions by use of a model system. 

2. Calculation of Fibre Al ignment  
We assume that: (a) the fibres undergo re- 
orientation as if they were isolated in the matrix 
without mutual interference; (b) the fibres are 
sufficiently short that the deformation of the 
local matrix in which they are embedded may be 
considered uniform; (c) the re-orientation of 

fibres is the same as that of the matrix with which 
they were initially in contact. 

2.1. Fibre Distribution Resulting from 
Arbitrary Deformation:Zero Volume 
Change 

In three dimensions, the density of fibre axes 
oriented in a particular direction may be repre- 
sented by dN/d.q where f2 is a solid angle. We 
shall assume an initially random distribution of 
axes in three dimensions, 

dN 1 
dr2 -- 2rr ' 

so that 

since all possible fibre orientations may be 
considered as originating at the origin of a unit 
sphere, and passing through a hemispherical 
surface. Hence the integral is performed over a 
solid angle of 2~r. 

Any fibre whose axis threads through part of 
the surface of the sphere before deformation will 
thread through the corresponding portion of the 
distorted surface after deformation. The prob- 
lem is thus to determine the solid angle dg?' 
subtended by an area element dS' (corresponding 
to dS = dg? in the undeformed sphere) after 
deformation. 

283 



G .  F .  M O D L E N  

A,• 
(b) 

x~ 

Figure1(a) Unit sphere in an undeformed matrix, showing 
tangent plane at P. (b) Strain ellipsoid, showing tangent 
plane at P', corresponding to the point P in the unde- 
formed body. (c) Diagram to show the solid angle sub- 
tended by the area element dS" corresponding to dS 
in the undeformed body. 

In fig. 1 the point P on the unit sphere has co- 
ordinates (x~, x2, x3) such that xl 2 + x22 + x, ~ 
= 1, referred to the principal axes of strain*, and 
a fraction dN of fibres thread through an area 
dS in the surface around P, such that 

dN 1 
dS  2rr 

After deformation, the coordinates of P, now 
the point P', become (nlxl, n~x~, nsX3) where nl, 
n2 and n3 are the extension ratios (nlnznz = 1, 
since there is no volume change during deforma- 
tion). 

OP~ is the normal to A' B' C'. Since the vol- 
ume of the tetrahedron ABCO equals the volume 
o f A '  B' C' O', 

dS' area A' B' C' OP 
~ ~ ~ 

dS area ABC OP1 

dS' 1 
That is, d--S = OP---~" 

Now in fig. lc, the solid angle d~ ' ,  subtended 

dS' cos 0 OP~ 
by dS' at O, is ( O p , ) ~ ,  where cos 0 = OP; " 

cos 0 OP 1 
Hence (op,)3 

( a s )  / OP~ / 
Therefore dD'----- O--P1 \(-0--~) 3] 

= dS/(OP') 3 . 

d N  dN ,3 
Hence d ~ '  -- d--S (OP)  

{dU ' 
or \dg2] = 2"~ (1) 

after deformation, where r = OP'. 
Hence the density of fibres oriented parallel to 

a given direction in the deformed body is 
proportional to the cube of the length of the 
radius vector from the origin to the strain 
ellipsoid's surface. This is true for fibres origin- 
ally distributed randomly in three dimensions. 

Similarly it may be shown that, in the case of 
fibres oriented randomly in two dimensions, the 
density of fibres oriented with axes in a particular 
direction is proportional to the square of the 
distance from the origin to the strain ellipse, 
provided the strain is confined to the plane of the 
fibre distribution. 

2.1.1�9 Plane Strain 
If in plane strain we define the strain at a 
particular point by the extension ratio n and the 
concurrent internal shear 7 (fig- 2), then the 
equation to the strain ellipse is: 

x~ 27 (72 ) 
n~ n2 XY + _~ + n ~ y 2 =  l 

and we obtain: [( 1) 1 
r =  n ~- t -n  2 n~ sin 2 0 §  

_ -7 sin 2 0 �9 
n 8 

The resulting distribution of fibre axes is 
shown in fig. 3 for n = 1, 2 and 4: a factor of 
1/~r has been introduced to make 

*None of the principal axes of strain necessarily coincides with the axis of, for example, a drawn wire or extruded rod. 
The principal axes of strain may also rotate during deformation, but this may be neglected if it is assumed, as here, 
that the original distribution is isotropic. 
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f+ /2(dN) --=/2 ~ d0  = 1 

since all fibre axes may be considered to lie 
between -- rr/2 and + ~r/2. 

_t 1~ I 

@ 

�9 nZ ~. 

z/,, (b) 

~ ~(c) 

a=tan-ly 
Figure 2 Rotat ion of  a f ibre dur ing plane strain. 0 = 0 
represents perfect f ibre a l ignment :  plane strain is con-  
s idered as taking place with an extens ion rat io n and a 
concur rent  internal shear  y. From the f igure, } = cot -1 
(n 2 cot ~)  and 0 = cot -1 (n 2 cot ~ -I- y). 

The following points are apparent from these 
curves in fig. 3: (a) for simple shear (fig. 3a) the 
maximum density of fibre axes does not coincide 
with the specimen axis, but rotates towards it as 
the shear increases: at the same time, the 
maximum value of dN/dO rises; (b) for small 
values of n (fig. 3b) y is effective in increasing the 
maximum value of dN/dO: the position of the 
peak moves away from 0 = 0 as y increases, but 
then moves back once more at large y; (c) at 
large n (fig. 3c) y has little effect either on the 
position or magnitude of the peak value of dN/dO. 

2.1.2. Axisymmetric Strain 
For axisymmetric deformation (for example, the 
extrusion of rod), the distribution is required 

with respect to O, where 0 is the inclination of the 
fibre to the extrusion axis (fig. 4)*. In fig. 4, the 
sides of the element at N subtend angles of dO 
and de at the origin: the area element subtends a 
solid angle d(dg?) = sin 0 dO de. The fraction of 
fibres having axes lying between 0 and 0 4- dO, 
over all values ofr is therefore, from equation 1 : 

1 [r 
dN = ~ jr  =0 ra sin 0 dO dq~, 

where r is the distance from the origin to the 
surface of the strain ellipsoid, in the same spatial 
direction as ON. 

If the extrusion ratio is n, then the equation to 
the strain ellipsoid, without taking account of 
concurrent internal shear, is 

(x2/n 2) + n y  ~ + n z  ~ = 1 

since the strains in the radial (y-direction) and 
circumferential (z-direction) are equal. The con- 
current internal shear, which is equivalent to 
telescopic deformation of the extruded rod, is 
parallel to the xz-plane in the x-direction: the 
equation to the strain ellipsoid becomes: 

x2 2Y (Y 2 ) 
n~ n2 XY + -~ + n y2 + nz2= l .  

Transformation to the spherical polar co-ordin- 
ates of fig. 4 gives: 

r =  ~ c o s  ~ 0 - ~ s i n 2 0 c o s r  

n~ -? n sin 2 0 cos2r § n sin 2 0 sin~r . 

The resultant distribution has been computed 
for a number of values of n and y and is shown 
in fig. 5 for n = 5. Again it can be seen that 
concurrent internal shear contributes little to the 
fibre alignment. 

2.3. Finite Volume Change 
Attempts have been made to produce fibre- 
reinforced materials by incorporation of fibres in 
powder [1, 2]. The fibres and powder are com- 
pacted and then subjected to some working 
process such as extrusion, to align the fibres with 
the axis of the extruded rod. 

If we assume that the fibres are randomly 
disposed in the uncompacted powder, the 
compaction, if it occurs in the same direction as 

*For  an  initially three-dimensional  fibre distr ibution,  the  dist inction between negative and  posit ive 0, which was m a d e  
above in the  case o f  the plane s train de format ion  o f  a two-dimensional  distr ibut ion,  is no longer  possible. Hence  the  
fibre dis tr ibut ions range f rom 0 = 0 to 0 = �89 
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Figure 3 Frequency distribution curves for fibre orienta- 
tions resulting from the plane strain deformation of a 
matrix containing an original random two-dimensional 
fibre distribution in the plane of strain. Extension ratio, 
n: (a) 1 ; (b) 2; (c) 4. The corresponding value o fy  at each 
extension is shown beside each curve. 

the subsequent extrusion, rotates the fibres 
away from the desired orientation. The distribu- 
tion of fibre axes is therefore not random in the 
extrusion billet. The effect o f  such volume 
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changes may be taken into account by use of a 
hypothetical process to yield the same final 
external shape and concurrent internal shearing. 

z 
.~0 Y~<7- 

a ~  

DIRECTION 

Figure 4 Cartesian co-ordinates and spherical polar co- 
ordinates in axisymmetric deformation. The x-direction 
corresponds to the specimen axis, the z- and y-axes to the 
circumferential and radial directions respectively. Con- 
current internal shear is parallel to the xz-plane in the 
x-direction. 
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Figure5 Frequency d is t r ibut ion curves fo r f i b re  or ientat ion 
resulting f rom ax isymmetr ic  deformat ion.  Extension ratio 
n = 5; redundant  internal shear, ~, = 0, 10. 0 is the angle 
between the spec imen axis and the f ib re  axis. The init ial 
isotropic dist r ibut ion is a lso shown.  

We imagine that the volume change occurs first 
without change in shape, and that extrusion then 
occurs at an extrusion ratio such that the final 
extruded rod diameter is obtained. Re-orienta- 
tion of the fibres then occurs only during the 
hypothetical extrusion process (accompanied by 
the effects of concurrent internal shear). 

Let f be the ratio of the compacted to the un- 
compacted volume, n I the actual extrusion ratio 
and 7 the concurrent shearing, as defined in the 
previous section. Then the distribution of fibre 
axes becomes the same as that resulting from the 
extrusion of a solid with random fibre orienta- 
tion, with an effective extrusion ratio n = n~f 2/a, 
accompanied by concurrent internal shear 7. 
Thus if f =  0.5, n _-__ 0.6 nf, then the extrusion 
ratio must be increased by a factor of N 1.7 over 
that which would yield a given fibre distribution 
in solid material. 

3. Experimental 
In order to ascertain whether the assumptions 
made in section 2 are valid, the rotation of fibres 
during mechanical working has been studied 
experimentally for the plane strain extrusion of  
Plasticine containing short lengths of 30 swg 
copper wire. The billet was prepared as [a 
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Figure 6 Relat ionship between init ial and f inal  orientation of short copper wires embedded in Plast icine. The solid 
curves cor respond to the re lat ionship calculated f rom the observed extens ion and concur rent  internal shear, namely: 
(a) n = 2, ~, = 0; (b) n = 2, y = 2.9, 
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sandwich, approximately �89 in. thick • 3in. wide • 
8 in. long, containing the copper wires, approxi- 
mately �89 in. long, in the mid-plane. The wires 
were distributed in three lines parallel to the 
length of the billet (the extrusion direction): one 
along the axis of extrusion and the other two 
lines at a distance of �89 in. from the sides. The 
orientations of the wires were found by radio- 
graphy of the billet before and after extrusion: 
these are shown in fig. 6 for 2:1 plane strain 
extrusion through a square die. Lubrication was 
effected by use of a wallpaper adhesive. The 
wires along the axis of extrusion were embedded 
in a matrix for which n ~ 2, y = 0: those near 
the billet edge were embedded in a matrix for 
which n = 2 ,  7 '=2 .9 .  The value of 7' was 
determined from the rotation of wires originally 
at 90 ~ to the axis of extrusion. For plane strain, 
the relation between @, the angle at which the 
fibre was originally inclined to the specimen axis, 
and 0, the angle after deformation (fig. 2), is 
0 ~--- c o t  -1  (n  2 cot r + 7"). 

The curves in fig. 6 were calculated for the 
appropriate values of n and y: it Can be seen that 
there is agreement between the observed behav- 
iour of the wires and that expected from the 
simple theory. 

4. Discussion 
The experimental evidence supports the view 
that the re-orientation of short fibres may be 
described with the simple assumptions made in 
section 2. These assumptions cease to be valid if 
the fibres are long in comparison with the 
dimensions over which the deformation is 
approximately uniform or if the volume fraction 
of fibres is sufficiently large to cause mutual 
interference to their movement. The analysis 
requires a knowledge of the strains produced in 
the worked material; the final orientation of any 
given fibre depends only on the final strain. Thus, 
the path by which the final strains are reached 
does not influence the final distribution of fibre 
orientations, although it will, of course, affect 
the way in which the final distribution is attained. 

The distribution curves derived form a basis 
for assessing the degree of working required to 
produce a desired degree of fibre alignment. 
Concurrent internal shearing becomes of de- 
creasing importance in causing alignment in 
axisymmetric and in plane strain forming proces- 
ses as the reduction in area increases. In addition, 
from the evidence of deformed grids, appreciable 
internal shearing is found only near the outside 
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surface of an extruded or drawn rod, becoming 
zero along the axis. The effect of this sub-surface 
shear should be apparent in improved fibre 
alignment at low extension ratios which in any 
case are not effective in aligning fibres throughout 
the bulk of the material. This has been reported 
in powder compacts extruded at an estimated 
effective extrusion ratio of 2.5-4 [4]. Provided 
the desired shape change is achieved, there 
seems to be little reason for choosing any 
particular method of working on the ground of 
superior performance in fibre alignment, unless 
very large concurrent shearing is involved. 

From this it follows that tool geometry (for 
example, the die angle in extrusion) will have 
little effect on fibre alignment, since it affects only 
the concurrent internal shear. 

Recently the rotation of fibres contained in 
viscous liquid has been treated hydrodynamic- 
ally [6]. The rotation of the fibre is caused by a 
velocity gradient in the liquid (it is, of course, the 
existence of a velocity gradient which causes the 
strain), and the rate of rotation is considered to 
be controlled by the moment of inertia of the 
fibre. The rotation is then dependent on the 
aspect of the fibre. However, such inertial effects 
are unlikely to be important at the low Reynolds 
numbers obtaining in the methods so far used to 
align fibres, and a more satisfactory treatment 
would be in terms of the strain ellipsoid. 

5. Conclusions 
On the basis of simple assumptions, it has been 
shown that after deformation the density of 
short fibres oriented in a particular direction is 
proportional to r 3 (where r is the length of the 
radius vector from the origin to the surface of 
the strain ellipsoid) for an initially random three- 
dimensional distribution of fibres. 

Curves for the distribution of fibre axis 
directions after plane strain and after axisym- 
metric deformation have been presented: con- 
current internal shear becomes of decreasing 
importance in contributing to fibre alignment as 
the degree of working increases. 

Acknowledgement 
The assistance of the Computer Centre, Lough- 
borough University of Technology is gratefully 
acknowledged. 

References 
1. N. H. PAR~KH, Amer i can  Society for Meta ls  

Conference,  "F ib re  Compos i t e  Mater ia l s" ,  edited 



R E - O R I E N T A T I O N  OF FIBRES D U R I N G  M E C H A N I C A L  W O R K I N G  

byS. H. Bush (1964) p. 115. 
2. A. KELLY and G. J. DAVIES, Metallurgical Rev. 10 

(1965) 1. 
3. D. CRATCHLEY, ibid p. 79. 
4. R. W. JECH,  E. P. WEBER, and A. D. SCHWOPE~ 

Metallurgical Society, A I M  M PE "Reactive Metals" 
(Interscience Publishers, New York, 1959) p. 109. 

5. s. D. HUNT, J. Inst. Metals 95 (1967) 287. 
6. c.  A. CALOW and R. J. WAKELIN, J. Inst. Metals 96 

(1968) 147. Discussion, J. Inst. Metals 96 (1968) 35. 

289 


